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ABSTRACT In this paper a Deep Reinforcement Learning algorithm, known as Deep Deterministic Policy
Gradient (DDPG), is applied to the problem of designing a missile lateral acceleration control system.
To this aim, the autopilot control problem is recast in the Reinforcement Learning framework, where the
environment consists of a 2-Degrees-of-Freedom nonlinear model of the missile’s longitudinal dynamics,
while the agent training procedure is carried out on a linearized version of the model. In particular, we show
how to account not only for the stabilization of the longitudinal dynamic, but also for the main performance
indexes (settling-time, undershoot, steady-state error, etc.) in the DDPG reward function. The effectiveness
of the proposed DDPG-based missile autopilot is assessed through extensive numerical simulations, carried
out on both the linearized and the fully nonlinear dynamics by considering different flight conditions and
uncertainty in the aerodynamic coefficients, and its performance is compared against two model-based
control strategies in order to check the capability of the proposed data-driven approach to achieve prescribed
closed-loop response in a completely model-free fashion.

INDEX TERMS Missiles, autopilot, reinforcement learning.

I. INTRODUCTION
An autopilot system for a modern missile must be able to
stabilize the missile rotational dynamics and to effectively
track the sequence of acceleration commands provided by the
navigation and guidance system to follow the desired trajec-
tory. Generally, to achieve these objectives, missile autopilots
are designed exploiting classical model-based approaches,
mainly relying on linearization of nonlinear dynamics and
gain scheduling control (see for example [1] and the refer-
ences therein). However, since the closed-loop performance
might be significantly deteriorated by the presence of highly
nonlinear terms in the plant dynamics [2], several non-
linear control strategies have been proposed to tackle this
issue, ranging from sliding mode approaches [3] to backstep-
ping [4], to nonlinear model predictive control [5] and H∞
techniques [6], [7]. All these solutions are model-based and
require accurate knowledge of the plant dynamics. However,
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this may be a restrictive assumption, as in practice unavoid-
able uncertainties arise due to unmodeled dynamics, time-
varying parameters, or unpredictable environmental effects.
When modeling becomes difficult or inaccurate, a data
driven-based approach to control design might prove advan-
tageous. To this aim, a field of machine learning known as
Reinforcement Learning (RL) [8], [9] has recently attracted
a wide research interest, thanks to its ability in learning an
optimal control policy by exploring an unknown environment
with the objective of maximizing a numerical reward signal,
without any precise description of the plant.

RL algorithms proposed in literature can be classified
according to two different paradigms, namely model-based
and model-free, depending on the assumed knowledge
of the environment model [10]. Although the approaches
that belong to the first class, i.e. the model-based RL,
have been extensively investigated in real applications (see
for example [11] and the references therein), they are
generally designed under the restrictive assumption that
model information is available to the agent. Therefore, the
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performance of these approaches highly rely on the accuracy
of the model [12]. These concepts advise using model-free
approaches when this information is not available for the
training phase. Indeed, conversely to the first methods,
model-free RL requires more interactions with the external
environment and bases its functionality mainly on the envi-
ronment changes and feedbacks, without the need to deeply
understand its functioning [11]. Therefore, these methodolo-
gies do not require an estimation of the Markov Decision
Process (MDP) model, and the value or policy function can
be evaluated directly by sampling in order to approximate the
task solution [10]. Although these features can limit the appli-
cability of these strategies in some real applications, they can
be used in all cases where there is no a priori information use-
ful for the training phase and, therefore, can be exploited to
address the more challenging case of a completely unknown
environment. Moreover, recent developments and remarkable
achievements in image processing [13], face recognition [14]
and natural language processing [15] fields suggested to inte-
grate the Deep Learning theory into the RL framework, lead-
ing to the concept of Deep Reinforcement Learning (DRL),
which leverages the ability of Deep Neural Networks to serve
as universal function approximators to achieve improved con-
trol performance [16], [17]. Thanks to DRL, it is possible to
deploy RL-based control systems for all those applications
where continuous or high-dimensional state and action spaces
make traditional RL strategies, such as Q-learning, impracti-
cal or insufficient. In particular, Deep Deterministic Policy
Gradient (DDPG, [17]) is currently one of the most common
approaches in this field of research. RL and DRL have been
successfully applied to various control engineering problems,
ranging from autonomous vehicles [18]–[21], to energy and
electrical systems [22]–[25], robotics [26], [27], IoT security
[28], [29] and maritime applications [30], [31].

Surprisingly, despite their significant potential, only few
recent works propose the use of RL techniques as a control
strategy for tackling different air vehicles problems, the most
representative being perhaps [32] and [33], where the authors
exploit a DDPG approach to design the inner-loop controller
providing attitude control for a quadrotor, the autopilot of
an Unmanned Combat Aerial Vehicle, respectively, or more
recently [34] where a RL-based missile path-planning algo-
rithm is proposed for head-on interception. In addition,
in [12] a DDPG approach is exploited to tune the control gains
of a typical fixed-structure three-loop autopilot [7], with the
aim of optimizing the missile autopilot performance.

In this perspective, the objective of this work is
to investigate the possibility of successfully exploiting
high-performance learning tools for the design of data-driven
missile autopilot control in a model-free fashion. To this
aim, a policy gradient model-free RL approach, specifically
the DDPG strategy, is adopted to stabilize the longitudi-
nal dynamics of a missile and to satisfy some performance
requirements through the choice of a suitable reward function.
DDPG is a relatively simple Policy Gradient (PG) actor-
critic algorithm based on the use of deep neural networks,

which has been chosen for the purposes of this work due
to its sample efficiency and the small number of hyper-
parameters involved, which makes the tuning procedure more
straightforward when compared to more sophisticated RL
techniques. Indeed, deep RL algorithms usually have a quite
large number of free parameters (the structure of the neural
networks, the learning rates, the soft update policy in case of
twin neural networks, as in TD3, and so on) whose effect
on the final result is not always obvious or immediately
interpretable. In recent years, several DRL algorithms have
been proposed in the literature, some of which can improve
the characteristics of the agent’s training with respect to the
DDPG algorithm exploited here; indeed, DDPG is sometimes
prone to training instability issues (mostly because it does
not implement any explicit bound on the gradient ascent
stepsize).

For the sake of completeness and to better motivate our
work, despite our focus is on DDPG, in the following dis-
cussion we will try to give to the reader an overview of other
comparable DRLmethods, while further details of the DDPG
algorithm are instead given in Section IV.

In general, PG RL algorithms aim at exploiting some form
of gradient ascent to optimize the policy so as to maximize
some given objective function, based on the reward obtained
at each time step. However, the gradient method does not
prescribe a way to choose a safe step-size in the optimization
procedure. For this reason, the Trust Region Policy Optimiza-
tion (TRPO) algorithm was proposed in [35], which proposes
to limit the Kullack-Leibler divergence between the old and
updated policies in order to limit the gradient steps amplitude.
Proximal Policy Optimization (PPO) [36] is a revised version
of TRPO, which exploits a clipping mechanism in order to
obtain a Trust Region-like optimization algorithm which is
compatible with the classical Stochastic Gradient Descent.
It is worth to remark that both PPO and TRPO implicitly call
for stochastic policies.

On the other hand, RL research moved along a parallel
path in order to increase the sample efficiency of the training
algorithms for agents which employ neural networks (espe-
cially in the actor-critic framework). The simplest algorithm
belonging to this class of techniques is DDPG,which contains
ideas that stem from the Deep Q-Network algorithm, but that
is naturally suited for continuous actions spaces, and which
exploits a replay buffer technique. In some implementations
target networks are also used to improve the algorithm’s
stability.

Modifications to DDPG have been proposed in the techni-
cal literature to improve some aspects of the agent’s training
procedure; in [37] the TD3 algorithm was proposed, which
adds some devices to avoid overestimation and reduce vari-
ance, providing better stability properties in some applica-
tion cases, while a maximum entropy version of DDPG/TD3
named Soft Actor-Critic (SAC) has been introduced in [38].

In this view, our final choice fell on the DDPG algo-
rithm, which tends to be more sample efficient than PPO
on one hand, and to have less tuning parameters than more
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sophisticated techniques such as TD3 or SAC on the other.
Thus, in this paper, we first recast the missile autopilot design
control problem into the RL framework, with the primary
aim of testing this approach in terms of control performance
(settling time, undershoot, etc.) and thenwe compare the fully
data-driven DDPG controller against classical model-based
control strategies (such as H∞ [6] and Model Reference
Adaptive Control [39]).

Most notably, despite the nonlinearities that affect the
process under exam, it was found that, when applying the
DDPG approach to the autopilot problem, a deep knowledge
of the plant model is not required and a linear model can
be effectively used during the training procedure, to reduce
the required computational burden, without degrading the
performance of the real closed-loop system, at least close to
the considered equilibrium point. Along this line, the agent
obtained through the proposed method is then validated on
the 2-Degrees of Freedom (2-DoF) fully nonlinear model.

The analysis further discloses how the careful study and
definition of the reward function allows to easily shape
the performance in the transient behavior, for example by
decreasing the undershoot phenomena. In addition, compari-
son results in a realistic flight scenario confirm that the excel-
lent capabilities of the proposed RL approach in capturing the
underlying unknown nonlinear behaviors allow providing sat-
isfactory closed-loop performances, which are comparable to
those of state-of-the-art model-based techniques, without the
need for running a detailed model of the process in real-time
or for having a detailed a priori knowledge of the nonlinear
dynamics. In addition, simulations at differentMach numbers
and with random variations in the aerodynamic coefficients
employing a Monte Carlo approach are performed in order
to provide some meaningful insight on the robustness of the
closed-loop.

It is finally worth noting that the need for pioneering
solutions to respond to unmet challenges as well as to new
opportunities derived from the application of AI techniques to
this research field is confirmed by the autopilot system very
recently designed in [40] leveraging a modified TRPO agent
trained on a detailed nonlinear model of the plant dynamics.
In particular, such system exploits a transformed acceleration
signal as the controlled variable to overcome the inherent
non-minimum phase characteristics of the missile dynamic.
This approach does not allow the authors to take into account,
during the training of the RL agent, the typical undershoot
that characterizes the transient response of a missile to a step
request in the acceleration. As opposed to [40], the present
work instead tries to investigate the capability of a purely
data-driven missile autopilot by explicitly considering the
main performance indexes (settling-time, undershoot, steady-
state error, etc.) in the DDPG reward function.

The rest of the paper is organized as follows. Sections II
and III describe the control requirements and the missile
nonlinear 2-DoF model, respectively, while in Section IV
a brief introduction to the DDPG algorithm is provided.
The details of the proposed RL approach, in terms of agent

structure, reward function engineering and training proce-
dure, are described in Section V while, simulation results are
discussed in Section VI, where the performance of the pro-
posed RL agent is compared to those of a self-scheduledH∞
autopilot [6] and of the Augmented Adaptive Controller
presented in [39]. Eventually some conclusive remarks are
given in Section VII.

II. PROBLEM STATEMENT
This section defines the control requirements that will be
taken into account in the design of the proposed autopilot
based on a RL control approach.

During the flight, the longitudinal dynamics of a missile
can be unstable, depending on the relative location between
the center of pressure and the center of mass, i.e. the center of
pressure is the point where the lifting force is considered to
act, as shown in Fig. 1. In order to stabilize and to control the
longitudinal dynamic of the missile a tail fin is introduced.
It follows that the controller must generate the required tail
deflection to produce the desired normal acceleration, while
stabilizing the airframe rotational motion.Moreover, the tran-
sient response of the missile to a step request in the normal
acceleration is characterized by an initial undershoot, which
is reflected by the fact that the associated linearized model
is a non-minimum phase one [39]. Ideally, this undershoot
should be kept as small as possible; however, as it will be
shown inwhat follows, this results in a slower response, hence
a trade-off between the bandwidth of the closed-loop system
and the maximum undershoot must be sought.

Based on the previous observations, the following qualita-
tive requirements are considered in Section V-B to design the
reward function of the proposed DDPG approach, in order to
ensure performance that are similar to those of other solutions
available in literature ( [6], [39], [41]):

1) the control system shall ensure the stability of the
closed-loop system over the largest possible operating
range, defined in terms of angle of attack α(t) and the
Mach numberM ; it should be noticed that awider range
in terms of α(t) is preferable since typical applications
foresee the scheduling of different controllers as a func-
tion ofM (see [41] as an example);

2) the control system shall take into account the maximum
deflection that can be applied to the tail;

3) in tracking a step command in the normal accelera-
tion, the control system shall minimize the following
quantities:

a) the rising time at the 90% of the final value;
b) the overshoot;
c) the undershoot;
d) the steady-state error.

III. LONGITUDINAL MISSILE DYNAMIC MODEL
In order to simulate the missile dynamics and to prove
the effectiveness of the proposed autopilot system, the
following simplified 2-DoF nonlinear model proposed in
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FIGURE 1. Simplified scheme of the considered missile: velocity vector is
depicted in red while the lift forces in blue.

literature [39], [41] is considered, which is capable of
describing the longitudinal dynamics of a tailed controlled
missile (see Fig. 1) under the following assumption.
Assumption 1 (Fully Decoupled Dynamics): It is assumed

that the pitch, yaw and roll channels are decoupled, so cou-
pling phenomena are ignored. �
Given Assumption 1, the longitudinal dynamic of a missile
can be described as follows:

α̇(t) = KαMCn (α(t), δ(t),M) cos(α(t))+ q(t), (1a)

q̇(t) = KqM2Cm (α(t), δ(t),M), (1b)

δ̇(t) = δv(t), (1c)

δ̇v(t) = −ω2
aδ(t)− 2ζωaδv(t)+ ω2

aδc(t), (1d)

η(t) = KzM2Cn (α(t), δ(t),M), (1e)

being α(t) [rad] the angle of attack, q(t) [rad/s] the pitch rota-
tional rate,M the Mach number, δc(t) [rad] the tail fin deflec-
tion command, δ(t) [rad] the tail fin deflection, δv(t) [rad/s]
the tail fin angular speed and η(t) [lb/slugs] the normal
acceleration.

Equations (1c) and (1d) define a second-order linear model
of the actuator that links the tail fin deflection command δc(t)
to the actual deflection δ(t), where ζ is the actuator damping
ratio and ωa is its natural frequency. Part of the system’s non-
linearity lies in the definition of the aerodynamic coefficients
for both the normal force and the pitch momentum, respec-
tively Cn and Cm, which are given by:

Cn(α, δ,M ) = anα3 + bnα|α| + cn

(
2−

1
3
M
)

×α + dnδ, (2a)

Cm(α, δ,M ) = amα3 + bmα|α| + cm

(
−7+

8
3
M
)

×α + dmδ, (2b)

where time dependency is dropped to simplify the notation.
Table 1 shows the values of the model parameters.

IV. DEEP DETERMINISTIC POLICY GRADIENT
In the RL approach, an agent must learn to interact with an
unknown environment in a way that maximizes the expected
cumulative value of a given reward function. Usually, the
environment is modeled as a Partially Observable MPD

TABLE 1. Parameters of the missile nonlinear model (1).

(PO-MDP); in particular, at each time instant, the agent
receives from the environment an observation and must pick
an action at based on such observation. In principle, the
observation may differ from the system’s actual state. How-
ever, for simplicity, we confuse the state and the observation
since st is the state of the agent’s internal representation
of the environment, modelled as a PO-MDP. The computed
action affects the next state transition of the system, from st
to st+1, after which the agent receives a reward rt+1 and a new
observation. The objective of the training process is to find a
policy that maximizes the cumulative reward, defined as

Rt =
N∑
k=0

γ krt+k+1, γ ∈ [0, 1), (3)

where the discount factor γ is generally close to (but less
than) 1. Moreover, the reward is computed over several
episodes, each consisting of (up to) N steps.
In classical RL tabular methods, discrete action and obser-

vation spaces are considered. The name tabular reflects the
fact that, in such methods, the agent usually stores a table that
associates to each state-action pair the value of the expected
cumulative reward Rt (represented by the action-value func-
tion Q(st , at )). If the agent had access to the true value of Q
for each action-state couple, the optimal policy would be the
choice of a that maximizes Q for each state s (greedy policy).
As a consequence, the objective of the training boils down to
finding a table that accurately represents Q(s, a).

Tabular methods, however, are limited in working only
with discrete action and observation spaces, being inefficient
in the presence of continuous and high dimensional spaces.
To overcome this limitation, several extensions have been
proposed in the technical literature, mainly exploiting deep
neural networks and their capability of serving as universal
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FIGURE 2. Basic scheme of a DDPG agent showing the interaction
between the actor, the critic (represented as deep neural networks) and
the environment (represented as a missile). According to the DDPG
technique, the environment provides the state st and the reward rt to the
nets, the actor provides the action at to the critic and the environment
while the critic evaluates the action-value function Q(st ,at ), providing it
to the actor.

function approximators. The combination of Deep Learning
techniques with Reinforcement Learning algorithms is usu-
ally referred to as Deep Reinforcement Learning. In particu-
lar, in actor-critic methods, the RL problem is separated into
two subproblems:
• critic: finds a good approximation of the action-value
function Q(s, a) (where s and a may assume continuous
values);

• actor: exploits the critic to improve the policy, repre-
sented with another approximator µ(s).

In this study, an actor-critic method known as DDPG algo-
rithm, originally proposed in [17], is considered. DDPG is
a model-free, off-policy approach that extends the DPG [16]
with the exploitation of deep neural networks. A simple repre-
sentation of theDDPGparadigm is shown in Fig. 2. InDDPG,
an actor network µ(s|θµ) is used to represent the current
policy, while a critic network Q(s, a|θQ) is used to approx-
imate the action-value function Q(s, a) (θµ and θQ indicate
the corresponding network’s parameters). In particular, the
critic network is trained so as to minimize the following loss
function

L(θQ) = E
[
(Q(st , at |θQ)− yt )2

]
≈

1
N

∑
i

(Q(si, ai|θQ)− yi)2, (4)

being yt = rt+1 + γQ(st+1, µ(st+1)|θQ) (or just yt =
rt+1, if the next state is terminal). The average is usually
computed across a mini-batch, randomly extracted from a
replay buffer B containing a (large) collection of the past
transitions (st , at , rt+1, st+1). The actor weights are updated
in the direction of the critic action-value gradient, according
to the chain rule applied to the expected return J w.r.t. the
actor parameters

∇θµJ = E
[
∇aQ(s, a|θQ)s=st ,a=µ(st )∇θµµ(s|θ

µ)|s=st
]

≈
1
N

∑
i

∇aQ(s, a|θQ)s=si,a=µ(si)∇θµµ(s|θ
µ)|s=si .

(5)

Since the Q update is prone to divergence, target net-
works are employed in order to improve the learning sta-
bility. A copy of the critic and actor networks, indicated
as Q′(s, a|θQ

′

) and µ′(s|θµ
′

) respectively, are used in order
to evaluate the target values [17]. The critic and actor param-
eters, i.e. θQ and θµ are updated according to (4), while the
target networks are updated either periodically or in a soft
fashion, i.e. θ ′← τθ+(1−τ )θ ′, with τ � 1. Finally, to find a
balance between the exploration of the state-action space and
the exploitation of the current policy, a noise sampled process
N can be added to the actor policy µ′(st ) = µ(st |θµ) + N ,
whereN is an Ornstein-Uhlenbeck process [17]. The DDPG
algorithm steps are listed in Algorithm 1 (see also [17]).

V. RL CONTROL SYSTEM FOR MISSILE
In this section, the proposed DDPG control algorithm is intro-
duced, focusing on the control system architecture, neural
networks and details concerning the reward function pro-
posed for the training phase.

A. CONTROLLER ARCHITECTURE
Starting from the state variables of the 2-DoF nonlinear mis-
sile model in (1), the observations vector for the agent training
has been chosen as:

Obs(t) =
[
α(t) q(t) δ(t) ηref (t)

]T
where ηref (t) is the acceleration reference value, generated by
the guidance and navigation system of the missile. It is worth
to remark that, despite the actuator angular speed δv(t) is a
state variable, it was not included among the observations due
to the technological difficulties in obtaining a reliable mea-
surement of this quantity. The only control action considered
is the missile’s tail fin deflection request δc(t), and the control
sampling time has been set equal to 0.01 s.

The structures of the neural networks (see Fig. 2) have been
defined through a trial-and-error procedure in terms of the
number of hidden layers and neurons, activation functions,
etc., considering a trade-off between performance and limited
computational capacity available on board. The main results
of the analysis that was carried out are summarized in what
follows.

The architecture of the critic neural network is shown in
Table 2. This neural network is characterized by 5 input
variables, i.e. observation and the action variables, and a
single output variable, representing the critic’s estimate of
the action-value function. Note that, all input variables were
normalized so as to take values in the range [0, 1]. Five
fully connected layers connect inputs and outputs, each of
them characterized by 100 neurons and REctified Linear
Units (RELU) activation function. In particular, the fully
connected layers 1 and 2 process in sequence the observa-
tion variables, while the fully connected layer 3 processes
the action variable. Then, the outputs of layers 2 and 3
are summed before passing through the fully connected
layers 4 and 5.
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Algorithm 1 Deep Deterministic Policy Gradient (DDPG)
1. Randomly initialize critic and actor net-
works Q(s, a|θQ) and µ(s, a|θµ) with weights θQ

and θµ;
2. Initialize the target networks Q′ and µ′ with weights

θQ
′

← θQ, θµ
′

← θµ;

3. Initialize the replay buffer B;
for episode = 1,M do

4. Initialize the random process noise N for the
action exploration;

5. Receive initial observation state s1;
for t = 1,T do

6. Select an action at = µ(st |θµ)+Nt according
to the current policy and the exploration noise;

7. Execute the action at and take reward rt and
the new state st+1;

8. Store transition (st , at , rt , st+1) in B;
9. Sample a random minibatch of N transitions
(si, ai, ri, si+1) from B;

10. Set yi = ri + γQ′(si+1, µ′(si+1|θµ
′

) θQ
′

);
11. Update the critic minimizing the loss function

by using equation (4)
12. Update the actor policy using the sampled

policy gradient in equation (5)
13. Update the target networks:

θQ
′

← τθQ + (1− τ )θQ
′

;

θµ
′

← τθµ + (1− τ )θµ
′

.

end for
end for

The architecture of the actor’s neural network is shown
in Table 3. This network has 4 input variables, i.e. the
observation variables. Also in this case, the input variables
have been normalized to take values in the range [0, 1]. The
only output of the network is the control action. Between
the input and output layers there are four fully connected
layers, each containing 100 neurons. The first three layers
have RELU activation function, while the last has a hyper-
bolic tangent (tanh) activation function, which produces an
output in the range [−1, 1]. The output of this layer is then
scaled taking into account the maximum allowed actuator
deflection δ̄c.

B. REWARD ENGINEERING
Once the structure of the agent has been set, a reward function
must be defined, taking into account the requirements dis-
cussed in Section II. To attain the desired goals, the following
reward function has been used:

r(t) = −ω1(t)Pfail+(1−ω1(t))
[
Pstep−K1e2(t)− K2q2(t)

−K3δ̇(t)2 − ω2(t)K4e2(t)− (1− ω3(t))K5δ
2(t)

+ω3(t)Pwin], (6)

TABLE 2. Architecture and parameters of the critic NN.

TABLE 3. Architecture and parameters of the actor NN.

where Pfail , Pstep, Pwin and Ki for i = 1, . . . , 5 are posi-
tive constants, ωi(t) for i = 1, 2, 3 are Boolean variables
and e(t) = ηref − η(t) is the tracking error. In particular,
once a range for the lateral acceleration has been fixed, Pfail
defines a penalty which is applied when η(t) exceeds the
prescribed bounds, causing the premature termination of the
current episode; otherwise, the bonus Pstep is applied. Finally,
an additional bonus Pwin is given to the agent when the
norm of the tracking error is less than a given threshold. The
Boolean variables ωi(t), i = 1, 2, 3 allow to apply the penalty
and bonus defined previously. In particular, ω1(t) is true if η
is inside the desired range, ω2(t) takes the value true if the
step response shows an undershoot, and ω3(t) is true if the
tracking error is less than a given threshold.

It can be seen how the control policy is rewarded by
function (6) when the missile acceleration is steered and kept
close to the reference, i.e. requirements 3a and 3d are verified,
while it is penalized when the missile motion exceeds a
prescribed range of lateral acceleration values. The quadratic
terms in the missile angular velocity and actuator deflection
and deflection speed are used to take into account the require-
ments about the overshoot and the undershoot, and to limit
the control power. Indeed, due to the non-minimum phase
behavior of the linearized plant, a further error penalty is
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TABLE 4. Parameters of the training problem.

considered to limit the undershoot. Since some requirements
conflict with each other, e.g. rising time and overshoot, the
positive constants Ki, i = 1, . . . , 5 weight the terms in the
reward function so that the resulting control policy will be a
trade-off solution.

C. TRAINING PROCEDURE
According to the reward function (6), a training procedure
has been performed on the missile linearized model around
the equilibrium point defined by M = 3 and α(t) = 0 [deg],
where each episode consists in a simulation of random
maneuver. In this way, the policy has been optimized with
respect to a single flight condition; then, the controller has
been validated in all the considered operating range, in order
to verify requirement 1.

More specifically, each training episode is characterized
by a different step command, whose amplitude is chosen
randomly within the range [−1, 1] [g], and terminates when
the simulation time reaches its maximum value, chosen
as Tmax = 1.5 [s], or when the lateral acceleration exceeds
the desired range of values. Table 4 contains the values of the
training parameters.

VI. SIMULATION RESULTS
In this section, the effectiveness of the proposed controller is
characterized through numerical simulations.

The DDPG agent has been trained by implementing the
procedure defined in Section V-C. In particular, the constants
in the reward function (6) have been chosen equal to

K1 = 1, K2 = 0.2, K3 = 0.002, K4 = 5, K5 = 25,

Pfail = 150, Pstep = 3, Pwin = 25,

in order to obtain a maximum undershoot less than the 50%
of the reference value, a maximum rising time less than 1 [s]
and a maximum steady-state error less than the 5% of the
reference value.

Section VI-A shows how the proposed data-driven
approach is capable to learn the nonlinear behaviour of the
missile described by (1) from the limited experience that
it gets from the response of the linearized model for spe-
cific flight conditions. Moreover, we evaluate the robust-
ness of the control system for different flight conditions

and in presence of uncertainty in the aerodynamic coeffi-
cients. A further assessment is carried out in Section V-B,
by comparing the DDPG trained agent with two robust
model-based strategies, i.e. the self-scheduled H∞ control
and the Adaptive Augmenting Controller (ACC), previously
presented in literature in [6] and [39], respectively. This
comparison shows the efficiency of the proposed model-free
autopilot in guaranteeing proper closed-loop tracking perfor-
mances and exhibiting, at the same time, a lower undershoot,
according to the proposed engineering reward function (6).
The comparison among these three controllers is carried out
by emulating the effects of the guidance law in the outer-loop,
whose aim is to provide the proper missile acceleration [42],
as a time-varying reference signal, which proves the capa-
bility of the proposed approach to work in more complex
scenarios as realistic missile guide systems.

A. CONTROLLER VALIDATION
In this section the closed-loop responses of the linearized and
nonlinear models are compared to validate the trained DDPG
agent. A maneuver starting from the flight condition consid-
ered in the training phase and with three different acceler-
ation requests is considered (see the black trace in Fig. 3).
The simulation results reported in Fig. 3 show that the
closed-loop responses to the first request of one additional g
are similar, hence we can consider the control requirements
satisfied in both cases. Furthermore, this simulation also
shows that, when the requested acceleration brings the sys-
tem far from the reference equilibrium for the linearized
model, theDDPG agent still exhibits acceptable performance,
hence proving its capabilities in learning a control law that
generalizes the nonlinear behavior, although the training pro-
cedure was based on a linear approximation of the missile
response.

Moreover, the robustness of the proposed approach
has been evaluated considering 820 different nonlinear
simulations performed for a step command of magni-
tude ηref = 1 [g], with different initial angles of attack
α(0) ∈ [−10 , 10] [deg], and with different Mach number
M ∈ [2 , 4]. The control performance have been evaluated
changing the cumulative reward at the end of each simulation.
Results in Fig. 4 show that the reward is almost indepen-
dent on the initial value of α(t), while the impact of M is
more evident. However, this degradation can be avoided by
considering the Mach number as a scheduling parameter,
as mentioned in Section II. It is worth to observe that the
narrow red band for M = 3 ÷ 3.2 depends on the fact that
the regime value differs from the desired value of less than the
5%, i.e.,ω3(t) is true in (6). Fig. 5 shows a comparison among
the closed-loop nonlinear responses according to its variation,
maintaining the initial angle of attack α(0) = 0 [deg].
Specifically, it can observe how all control requirements are
verified for M = 3.1, for which the maximum cumulative
reward is attained, while a decrease of M causes an increase
of the rise time and a less percentage value of the undershoot
phenomena, with a converse behavior whenM increases.
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FIGURE 3. Comparison between the closed-loop responses of the linearized (blue) and nonlinear (red) models. Time traces of: (a) angle of
attack; (b) pitch rotational rate; (c) tail fin deflection; (d) normal acceleration.

FIGURE 4. The figure show the variation of the cumulative reward Rt ,
as defined in (6), over the considered flight envelope. In particular,
cumulative reward has been evaluated for the same maneuver starting
from different initial attack angles α0 and at different Mach numbers M.

Furthermore, the robustness of the proposed approach has
been evaluated through Monte Carlo simulations performed
with the nonlinear model, that start at the initial flight con-
dition α0 = 0 [deg], M = 3, and where an additive uncer-
tainty on aerodynamic coefficients 1Cn and 1Cm has been
introduced in the range [−20 , 20] % of the corresponding
nominal value.

Fig. 6 shows the results for 100 runs when a step com-
mand of magnitude ηref = 1 [g] is applied. Despite this
significant variation in the model parameters, the approach
still guarantees the closed-loop stability in all the perturbed
scenarios. As for the case of variations in the Mach num-
ber, robustness against model uncertainty was not consid-
ered during the training phase. Therefore, as expected, some
slight performance degradation can be observed. However,

obviously this degradation can be counteracted by including
also robustness as a further objective of the training phase.

B. COMPARISON WITH MODEL-BASED METHODOLOGIES
To better discuss the advantages of the proposed DDPG
strategy in tracking the missile lateral acceleration, we now
compare its closed-loop behaviour with two different robust
model-based strategies proposed in the literature to solve
the same control problem. Specifically, the former has
been presented in [6], where authors developed a robust
self-scheduled H∞ control to regulate the lateral accelera-
tion of a missile, while the latter consists of an adaptive
control mechanism named Adaptive Augmenting Controller
(AAC) [39].

The design procedure for the self-scheduledH∞ controller
relies on a Linear Parameter-Varying (LPV) model of the
missile, whose state space representation depends on both α
and M . In this case, robustness is achieved by guarantee-
ing H∞ performance for the LPV plant, when α ranges in
the interval [−20 , 20] [deg], whileM ∈ [2 , 4].

Similarly, the AAC achieves robustness by design-
ing a baseline state-feedback that guarantees robust sta-
bility for all the models belonging to the convex hull
defined by the linearized models with M = 3 and α

equal to {0 , 5 , 10 , 15 , 20} [deg]. Moreover, for both the
model-based controller, the gains have been tuned so as
to obtain a similar undershoot when performing a 1 [g]
maneuver.

The simulation results are shown in Figs. 7 and 8, where
the closed-loop responses have been compared by performing
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FIGURE 5. Controller performance at different Mach numbers for the same 1 [g] step maneuver. Time traces of: (a) angle of attack; (b) pitch
rotational rate; (c) tail fin deflection; (d) normal acceleration.

FIGURE 6. Monte Carlo robustness analysis for 100 random uncertainty realizations of the aerodynamic coefficients Cn +1Cn and Cm +1Cm, when
a 1 [g] step maneuver is applied. Both 1Cn and 1Cn are allowed to vary in the range [−20%,20%] of the nominal value of the respective coefficients.
Time traces of: (a) tail fin deflection; (b) normal acceleration.

two different maneuvers. For the comparison in Fig. 7 we
have considered a sequence of three step commands. When
tracking the first 1 [g] step reference, all the controllers show
the same undershoot, while the response of the RL agent

is characterized by a slightly shorter settling time. When a
reference changes larger than 1 [g] is requested, the response
of the data-driven controller is always characterized by the
smallest undershoot and the smallest control effort when
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FIGURE 7. Performance comparison among the proposed data driven controller and two model based controllers in tracking a reference
signal which model a sequence of step maneuvers of different magnitudes. Time traces of: (a) tail fin deflection; (b) normal acceleration.

FIGURE 8. Performance comparison among the proposed data driven controller and two model based controller in tracking a reference signal
which emulates the effects of a guidance system for hitting a moving target. Time traces of: (a) tail fin deflection; (b) normal acceleration.

compared with the two model-based controllers. Moreover,
in the worst case, the settling time for the RL controller is
similar to those of the other two considered approaches.

The further simulations shown in Fig. 8 refer to the
response to a reference signal similar to the one computed
by a guidance system, as proposed in [42]. Here we want

to remark that, despite the RL controller was not trained
using such a class of reference signals, it shows similar
performance when compared to the two model-based con-
trollers. From these results, it is possible to conclude that the
proposed DDPG autopilot shows the same robustness against
model uncertainties as to the two model-based approaches.
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This result is achieved without the need for a detailed system
model, as required by both the self-scheduledH∞ controller
and the AAC. Indeed the former required an LPV description
of themissile response, and the lattermore than one linearized
model, while the proposed RL agent practically achieves the
same performance exploiting just a single linear model. This
further proves the effectiveness of model-free data-driven
approaches for the design of robust autopilot systems.

VII. CONCLUSION
The feasibility of a model-free controller for the lateral
acceleration of a missile has been investigated in this
article. Specifically, exploiting the DDPG approach, a RL
agent has been trained on the linearized dynamics of
a 2-DoF nonlinear missile model, taking into account the
main performance indexes. To assess the effectiveness of the
proposed approach, different scenarios have been simulated
on a 2-DoF nonlinear model, proving the efficiency of the
data-driven approach in stabilizing the rotational dynam-
ics, satisfying the control requirements in design flight con-
ditions. Furthermore, a robustness analysis is provided to
show the capability of the proposed approach in guaranteeing
closed-loop stability in a wide range of flight conditions
and in presence of model uncertainty. Along this line, future
works will involve the improvement of the robustness w.r.t.
variations of the Mach number, model uncertainties and mea-
surement noise, by the explicit inclusion of robustness as a
further objective during the training phase.
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